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1. INTROUCTION:

Attempting to determine fluid flow around an obstacle requires the

solution of the Navier-Stokes equations;

T + ax + y (1)

where

U M p E pu2
pu pu -a

* ~Pe Pue- I vx4,
xx x

:.. F- pv v- Y

PUY -
9.: V--0.

Pue v Y - UCx-
yy Ky y

a -- p- (2/3) p.+2u u qx-kTx

C"y =  (uy + vx ) 4y M k TY

a -- p - (2/3) ..' + 2u u e -LvT+ 2"y

p - 8RT u - U(T)

Here, the four dependent variables p, u, v, and e represent the

physical quantitive of density, x- and y- components of velocity, and

internal energy.

Even a casual glance at this system of equations shows that it has

many extremely difficult aspects. It is a system of four equations in

the four basic unknowns, which is of mixed parabolic hyperbolic type.

It is in two space dimensions and in addition is nonlinear. Any one of

these problems would be sufficient to make obtaining an analytic solution

difficult so it is fair to say that an analytic solution is out of the

question. Thus these problems are "solved" by numerical wauthods.

* "*t * h r . '., " "- , . ,-'' : , . - *',i ' ' . " . . .," " . - " . " .: ". ? ." .""



What this means of course is subject to some interpretation. What

usually happens is that a number of approximations are made to the original

problem, in order to arrive at a discrete approximation which may then be

solved by computer. Most obviously, "space" is interpreted, not as a

continuum, but as a finite number of grid points. The value of pressure

for example at a grid point is then used to calculate the value at nearby

points, by means of a few terms in a Taylor series. Derivatives are

approximated by finite differences. If the flow is around a body, then

one assumes that velocity is zero on the surface of the cylinder, and

the surface temperature is prescribed. The assumption is that if

the grid is fine enough, and if time steps are sufficiently small, then

this discrete model is a reasonable approximation of the original eq-

uations (1).

A method for solving supersonic flows that was found by experience

*to work well was MacCormack's alternating direction explicit scheme.

Thus, this was a logical method to be experimented with for subsonic flow.

However. the transition was not easy. The HacCormack method demands

certain fictitious (or numerical) boundary conditions due to the dif-

ference algorithm which are not physically present, and which were

arrived at by a process of computatonal experimentation. These

methods did not work in the case of subsonic flow, although they did in

the case of supersonic flow.

II. OBJECTIVES:

nThe purpose of this project was to explain thus anomaly, and to

arrive at improved far-field boundary conditions for the subsonic case.

To do this, we will first review the theory for a single wave equation,

.~o ,
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then for systems of linear hyperbolic partial differential equations,. and

finally, we shall discuss how numerical experiments with the Navier-Stokes

equation confirm the predictions based on the elementary theory.

III REVIEW OF NUMERICAL THEORY F* ONE EQUATION:

Obviously the full system of equations (1) is too complicated to

achieve a great deal with sophisticated mathematical analysis. Typically,

mathematicians will work with simpler equations which in one way or

another resemble the original system. One tries to use the mathematical

insights of the simpler situation in the context of the more complicated

one. This Is obviously not one unbroken chain, of reasoning, but more a

process of educated guesswork.

Surprisingly, one equation which provides a great deal of insight

is the simple wave equation

u t + aux 0 (2)

We consider this equation on the interval [0,11. On the real line, the

solutions to this equation would be waves running from left to right with

velocity a, which are constant along the lines x - at - d, deR

*. Thus, if we consider this equation on the region [(x, t) 0< x <1, t>O)

then it will be analytically determined by the initial value U (x, 0) - f(x)

0 x <1 and the boundary value u (o, t) - g(t). With these conditions,

the initial boundary value problem is well posed. It is impossible to

prescribe boundary conditions at x - 1 instead of x - 0 without either (a)

limiting the initial values or (b) causing discontinuities. All of this

makes perfect physical sense. In order to know what happens in a wave

* situatio,, we must give information on the initial conditions and also on

the waves entering at-the inflow point.

3



However, the MacCormack scheme which is equivalent to the Lax-Wendrof

n+l
scheme requires some knowledge of u (1, t) Indeed the value for j is

given in terms of 2 and uj. Therefore, the boundary point x - 1,

(j - J) requires special treatment of some sort. This special treatment is

called a "numerical boundary condition" or compatibility condition. The

imposed can have an enormous impact on the successful numerical solutions

" . of the problem.
6*Q

Pherhaps the best two recent sumaries on this simple equation were

accomplished by Kreiss [5] and Gottlieb and Turkel [2].

Kreiss is basically concerned with what can go wrong. He observes

for example that if you overspecify, i.e. just make a guess at what u(l, t)

is going to be and then simply prescribe it, convergence to a steady state

may or may not take place, depending on whether the number of grid points

*i is even or odd. If this happens with this simple case obviously you don't

want to try it in a more complicated case. (We shall have more to say on

this later).

One method that works well is to use ux (1, t) - 0, or in finite dif-

ference form un , un A slight error in u at the outflow point is made,
S"J-l

but since the flow is from left to right, this error does not propagate back

*: into the x-domain. This is proved analytically in Parter [8]. About the

worst mistake that can be made is not to specify u at the incoming

boundary. For example, one might confuse the inflow and outflow boundary

and prescribe u n un, and u. - M all n. In this case as the space step

and time step become small this conveys to a steady state on an interval

[0,T] where the steady state is determined by 5he initial conditions at

the inflow point.

4



A moment's reflection ought to convince us of how undesirable

this is, since we do not know the correct steady state, our initial

conditions are bound to be different from the correct solution. However,

what we seem to converge to actually depends on the choice of the initial

conditions. Again, we shall have more to say about this when we discuss

computational solutions of the Navier-Stokes equations.

Another excellent paper on the same subject is by Gottlieb and

Turkel [2]. In this paper, a comprehensive review of many different num-

erical boundary conditions is given. For example, in addition to the ones

already mentioned at the outflow, one might consider u 0, which numericallyxx

isU 2 -
2u j_1 + uj JM 0 or even ut + au xf- 0 where u+J -u a(At/Ax)

(un I - uj). This corresponds to a one-sided "upwind" differer.ce approxi-

K" marion at the outflow boundary.

Their conclusion is that the upwind difference appears best, although

the convergence of the scheme with u X 0 is just as fast (but less accurate).

IV. WELL-POSED BOUNDARY CONDITIONS FOR LINEAR SYSTEMS:

The simplest systems of two linear wave equations to consider is

U t + au - 0

vt -by x - 0 (3)

where a > 0 b > 0, 0 < x < 1, and t > 0. In this case the waves in u

travel from left to right with velocity a, and the waves in v travel from

right to left with velocity b. Clearly u must be given initially and at

the left boundaryl whereas the values of v must be given at the right bound-

ary. This is analytically necessary in order to have enough information to

solve the problem. However, there is a minor complication. The incoming

5
.. . . . . . . . . . . . . . . .
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value of u may be given at x = 0 in terms of v (which, after all,

is determined there), and the incoming value of v at 1 may be given

in terms of u. Thus, the initial boundary value problem (3) is well

posed if the initial conditions are

u (x, 0) = fWx) v (x, 0) - g(x)

and the boundary conditions are

u (o, t) FW(t) + cI v(O, t)

v (1, t) = (t) + c2 u(l, t) (4)

Notice that if cI = c2 = 0, then the problems are completely

uncoupled, and each is a copy of the single equation in section IV.

For a moment, consider the case where Fl(t) = Gl(t) = 0, and cI = c2  i.

In this case, we get a different phenomenon. Let us assume that u

is identically zero initially, and that v is identically 1. Then the

square wave in v travels to the left, causing u to be non-zero at the

in-flow boundary, and thereby propagating from left to right with velocity

1. When u reached x 1 1 it would in turn influence v by the boundary

condition (4) and a new disturbance would propogate in v from right to

left. This is the reason that this boundary condition is called a

"reflective boundarv condition".

Notice that if both u and v travel from left to right, i.e. if

u + au 0x

v + bv 0
t x

where a > 0, b > 0, 0 < x < 1 and t'> 0, then this problem does not

arise. The initial conditions of u and v must be specified as must

the boundary conditions at x 0. No reflections or coupling is allowed

to take place.

6
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For a general hyperbolic system of the form

Ut + u 0 (5)

t x

one must diagonalize the matrix Aj i.e. one must find a matrix T so that

T AT -D

where D is a diagonal matrix. One then makes the substitution W - TU and

the equation (5) transforms to
-. 4.~W+DWx=0

Wt +DWx-0

The number of positive eigenvalues of D identifies the right-running

variables Wi and the negative ones identify left running variables. At this

.point, we emphasize that the only way to be familiar with the wave nature

of (5) is to look, not at the physical variables u in which the problem

was originally presented, but instead at the new variables W which are

linear combinations of the old ones. Only then is the wave structure

apparent.

If k is the number of positive eigenvalues, and if WI represents the

k-vector of these k coordinates of WI and Wii is the n-k other coordinates,

then unless WI and W11 are independently prescribed at the left and right

boundaries respectively then we may get reflective boundary conditions.

For well-posedness, it is sufficient that at x - 0, WI be given (possibly

depending on Wii) and that at x - 1, Wi be given with possible dependence

on WI . Only then can acceptable boundary conditions be formulated in terms

of the physical variables U.

V THE NAVIER-STOKES EQUATIONS AND CHARACTERISTIC VARIABLES:

7We now begin our discussion of the equations of gas dynamics. We

will neglect viscosity for the purposes of this analysis. We will assume

7



that the flow is one-dimensional and subsonic and that the deviations

from free-stream solutions are small. This will allow us to neglect

second order terms.

There are many forms of this equation, but the one most suitable

for the present discussion is

au + Aau (6)
at ax

where

A- 0 1 0
(~2

(y- 1)4 _  L -u

and t=

or in terms of physical variables

au -au-+ A -- - 0 (7)

where

A = M 1 AM

and

M = 1 0 0

":u/p i/p U

21)u 2 (l-y)u (y-1)

Here we make the key assumption that deviations from the free stream

are going to be sufficiently small that we can treat the entries in the

matrix A as being approximately constant (at least locally). Denote

these frozen variables by a 0-subscript. We then make the substitution

8
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W 0 ~-1/c 2

( 0a2 ) = o (8)
23  0 -I10

W 3) 0 1/p 0C0)

and when this is substituted into (7) we obtain

aw aw1
at+ Uoa 0

aw2  aN2
+ (U+co)-:-. = 0

at
aW3  aw3
at + (Uo-Co)- - 0

Notice now how this breaks down into two separate cases. On the one hand,

if flow is supersonic then all wave motion is in the left to right direc-

tion. In this case all analytic boundary conditions ought be prescribed

at the left hand side and only numerical boundary conditions prescribed

at the right hand side.

Since the substitution (8) is equivalent to

p a K1 + (Po/2c) (K2 + K3)

u - 1/2 (K2 - K3)

p a Poco/2 (K2 + K3)

it follows that prescribing all physical variables at the inflow and pre-

scribing ap/ax - au/ax - ap/ax - 0 at the outflow is sound in terms of

analytical and numerical requirements.

However, we must now consider the case of subsonic flow. In this

case the situation is completely different. Here, two of the variables W

and W2 go left to right with velocities u and u+c respectively, whereas

one of the variables runs right to left with velocity Co-U. While

4 ' '- .. .-. ... . . -....... ... ,.. ... ,. *4 ,'. 4, ...--. .-4 , ,- -.. ..-, ..., ,... ,-., . .,,, -. °..,



the variables W2 and W3 have no clear physical significance. Yet it

is only by considering these variables that the full wave structure of

the equations (6) or (7) can be understood. Thus, one would be led to

predict, for small deviations from free stream conditions, that the best

boundary conditions would be for an interval (o, L)

W1 (o,t) = K1  dWl (L,t) = 0
":- dx

W2 (o,t) - K2  dW2 (L,t)-0 (9)

dx

dW3
(0,t) 0 W (L,t) -K 3

Note the curious aspect of these boundary conditions. In order to

prescribe the numerical values K1 and K2, we need to know accurately all

three physical variables at some distance to the left. However, only the

two combinations K and K are prescribed. This can be summarized by saying

that while we have used all three pieces of information upstream, we have

done so in such a way that one degree of freedom remains, thus allowing

the waves in W3 to exit without problems.

On the basis of the linearized model, various other combinations

would be well-posed. For example, it is possible to prescribe K3 in terms

of either K1 or K2 at the outflow x - L. Thus at the outflow one may

prescribe

W2 (L,t) - F (t) + c1 W1 (L,t) + c2 W (L,t)

For example if c1 M 0, c2 = 1, then this amounts to putting

u (L,t) - 1/2 F3  (10)

i.e., we prescribe velocity at the outflow.

Alternatively, we might take c1 = 0, c2 = -1 and we would get

p (L,t) - ((p0c0 )/2)F 3  (11)

10
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i.e. we prescribe velocity at the outflow. Many other combinations are

possible, but as remarked in section IV, all these will cause errors in

the initial data to be reflected back into the medium as waves running

, from right to left. For example, we would predict that an error in W

would be reflected back as an error in W1 if we use boundary condition

(10). As we shall see,-this is exactly what happens.

At the inflow end, we may prescribe W1 andW 2 in terms of W Thus

" *the following boundary conditions are well posed;

W1 (o,t) - F1 + c1 W3 (o,t) (12a)

W 2 (o,t) - F2 + c 2 W3 (o,t) (12b)

For example, choosing c2 - +1 in (lib) corresponds to

u (o,t) - (1/2) F2

(i.e. prescribing u at the inflow) and c2 - -1 corresponds to

p (o,t) - (PC /2) F2

(i.e. prescribing p). One can prescribe the combination (u,p) by first

choosing c2 - 1 (thereby prescribing u) and then choosing c1  P o/Co f

thereby prescribing p in terms of a given F, and a prescribed u(o,t). Since

(a) and (llb) reduce to

u(l + c2 ) + _ -C F
2 P 0c0 (- 2) 2

P --- P- (po/C - c) + Cu - F
P 0c 0 0o 11 1

about the only condition we cannot prescribe is u(o,t), p(o,t), since there

is no choice of cl, c2 to eliminate P from these equations.

Again, we emphasize that each of these boundary conditions is reflect-

ing, i.e. deviations from the free stream in the initial data get reflected

01
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back as waves in W1 and W and then travel back downstream. About the

worst thing that can be done is to prescribe reflecting boundary condi-

tions at the inflow x - 0 and the outflow x - L. In this case errors

can keep being reflected up and down the region, never being allowed to

exit. This prevents convergence to a steady state and may even give rise

to fictitious periodic oscillations.

'9 We conclude this section with a review of the conclusions on bound-

ary conditions. Based on the linear model, boundary conditions (9) seem

optimal. Any other prescription of the physical variables, although well

posed, causes reflections of the deviation from the true solution. If for

example, only the physical variable p, is known at the outflow then it is

possible to prescribe p at the outflow, in such a manner that the problem

remains well posed. We emphasize that this will cause errors to propagate

upstream, thereby slowing the process of convergence to steady state.

This may not be too bad, so long as the upstream boundary conditions are

not also reflecting. On the other hand, if they are, then convergence to

free stream may never occur.

VI. DISCUSSION OF NUMERICAL RESULTS - NONLINEAR COUPLING:

The one dimensional Navier-Stokes equations were solved with an

alternative direction explicit MacCormack scheme, on a one-dimensional

. net with forty grid points. The code was an exact one-dimensional version

of a three-dimensional code which had proved successful in many supersonic

studies [6), [11). There were two questions to answer. The first was,

given that equation (8) is correct for infinitesimally small deviations

from a constant free steam, how correct is it when deviations of an

12



intermediate (of the order of 10%) magnitude are there instead? It

would be too much to hope that the variables Wi, W2, and W3, remain

uncoupled, but we should be able to get an idea of the order of magni-

tudes of the coupling involved. The second problem of course, is to

assess the influence of the various types of boundary conditions commonly

employed. We will deal with the latter problem in section VII.

To do this, we considered a uniform free stream situation, with

pressure equal to 2000 lbs/ft velocity equal to 548 ft/sec and density

equal to 0.0023 slugs/ft 3 . We created a deviation from the steady state

condition in a variety of ways as in [9] , [10], and then watched the

progress (or lack of it) to a steady state. A variety of different wrong

initial conditions were used. One type was to impose a 10% deviation in
one of the variables K K2 , K3 at the points {x J-18,19.20,21,22).

We would then watch the disturbance, graphically as it propagated up or

down stream. Another possiblity was to put in uniformly wrong initial

conditions where some or all of the characteristic variables W1 , W2, W3

are perturbed throughout by a percentage error of 10%. Each plot then

showed the percentage error, with the different curves representing the

progress of time as one ascends the plot. The curves are plotted every

twenty five time steps when At - (.9)(Ax)/(u+c). We also point out the

percentage errors in W1, W2, and W3 at the end of the run, so as to obtain

information on relative accuracy and speed of convergenceof the various

methods.

Figure 1 *gives the results of an experiment, which is ideal in terms

of the linear theory. An initial disturbance in W3 the left-running

*Figures are located at and of report.

13
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c ificteristic variable is given (graphed as K3) and we observe defle-
tions in the variables W1 W2 W3 . As one can readily see from the pictures,

the disturbance propagates upstream rapidly until convergence is reached

(.1% agreement with physical variables), which takes place within 130

time steps. This gives us six curves. Note that although a good deal

of undershoot and overshoot in W3 becomes apparent, there is no significant

interaction with W1 or W2 . The same situation appears with initial dis-

turbances in WI , the slow-moving right running wave. From this experiment

it appears that deviations in either W1 or W3 will not effect either of

the other two variables. However, as shown in Figures 2 and 3, when initial

disturbances are in W2 , an entirely different situation exists. Figure 2

shows a uniform initial disturbance in W of minus ten percent, while W

and W are left undisturbed. Initially the wave in W2 , propagates rapidly

out of the medium. Indeed, after fifty time steps it is essentially gone

from the picture. However, this does not happen without affecting the other

two variables. Notice how, in the top graph, a large disturbance is left

in W1 after fifty time steps and in W3, we have that W3 values one almost

constant at minus eight percent. However, once the W2 wave has made its

exit, the other two variables uncouple and resume their normal wave motion,

and the error can be seen propagating out of the solution in the usual way

convergence is attained within three hundred iterations. These particular

results illustrate what became increasingly clear throughout the series;

perturbations in W2 had a large effect on W1 and W3 whereas if W2 was not

perturbed, W1 and W3 behaved as if uncoupled. Perturbations in W1 and W3

had little effect on W 2. No qualitative explanation of this phenomenon

is known at this time.

14
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* P1

Figure 3 shows the same phenomenon. Here an error of -10% is made in

* W2 whereas errors of +10% are made in W1 and W3. Again, we see that unitl

the W2 wave exists, there are massive disturbances in the wave structure

of W and W As soon as W exists, (after 75 interations) the regular
1 2* 2

wave structive reasserts itself and errors propagate out in a predictable

wave-like manner. Again, convergence takes approximately three hundred

and twenty five iterations. It seems clear that this is optimal given

the limited wave velocity, sowe can deducethat these affects are due to the

nonlinear coupling. Thus, even after the W2 wave exists it will take at

least a miximum time of {L;(u-c), L/u} seconds for the resulting errors

to propagate out of the system.

VII. DISCUSSION OF NUMERICAL RESULTS - BOUNDARY CONDITIONS:

The linear "small deflection" theory predicts that the best boundary

conditions would be the prescription of the charateristic variables at

their point of entry with some form of (stable) numerical boundary condi-

tion for the point of exit. Here are two such schemes

INFLOW OUTFLOW

I 1 (o,t) - K dW1 (L,t) I 0

dx

U2 (o,t) - 2 dW2 (L,t) - 0 (13)

dx

dW3  (or) - 0 3  (L,t) K 13

dx

Here K1 and K2 are numbers calculated from the known values of

u, p, p at the inflow and K3 is calculated from the known values of u

and p at the outflow. Notice, however, the one "degree of freedom" is

left at the inflow point. This allows the variables to adjust but in

15



compensating ways. The boundary conditions in the code are usually

in terms of the physical variables so we translate (13) to physical

variables.

INFLOW
"-~ 0C

- .P1 l 2. [K2 -u 2 - (1/P 0C0) p 2

S1 = 1/2 [(K2 + u2 - (1/p0oco ) p21

1 = K1 + ( 0 2c°) [K2 - "2 + (1/pc°) p2
]

OUTFLOW

uN = i/2[uN_l + (1/Poc o ) pN-1 + K 3)

PN (Poco/2) [K3 + u,-1 + (l/p0oco) PN-1

oN (Po/2c0) [K3 + u _-] - [/(2 c0
2)] p%_1 + D _-

This et of boundary conditions is pre icteJ tu work well in the ;,;,,nr

s~udles of one Lvquation, occurring in [2) and [3]. We shall .qll -.!,,se

boundary conditions the "no-change characteristic boundary conditions".

Another possiblity, suggested by one-D analogues in [2), is the following:

INFLOW OUTFLOW

W (ot) - K1 ail + u, ;W 1 0

at V. x
W2 (o,t) - K2  W2 + (u2__ (92-

at ax
3WW

-t + (u-c~l0W(~) - K
3 3

.'-- ) 1  x W3 (L,t) = 1(3

where derivatives in the x-varlable are downwind at the inflow and upwind

at the outflow and forward in tine. The numbers Ki, K2, K 3 are prescribed

as before. In ter-s of the physical variables these translate into

16



INFLOW

u1  - 1/2 2K + 1 -(1/pc)p + o Co lu u 2 +(/Oononnpc +
12 001 0 0 x 12 0 0 2 1

P+l , (nC/2)_K 2+(1/poCo)P -Ul(U-c)(At/A) [u2-u n +(l/P ,)(pn+p2)]]

Pr1 - K1 +(P/2c0 )EK 2+(/PoCo1)P-U+(Uo-C) (0t/Ax) u2-u 2

OUTFLOW
+1 A.i~in 1 -K+ x/x( c r n u+(1 /P c ) (pn~ Lpniu.,-(1/2) [u'+ -ooPN-K3 +(Ax/Ax) (Uo o +c~ -N(/oo ) (NIP)
uN N pI cJN N pc +No o N-1 N'L

3.. 0 00N

( P (p c /2)[K3+un +(1/Poco)pn+(At/Ax)(u +C n U n n+(/Pc)(Pn1 -P n]]N 00UoSo+N0 o) [uN-l-u (/o o ) (NIP ]

n+l.(/c)K+ n + / c)n+(t&xu+ unn (/coPn~i- n]

N (3N 000 0 0 N- -n

+ Pn _U 2 )n + A/xu[n -n + / 2 Xpn n
N o + (Atl0x)U 0  -p- 4+(l/Co) (pN - PN-1 ) ]

We shall call these the "windward difference characterstic boundary condi-

tions". Note: u c can be different values at inflow and outflow.

The performance of the code with either of these was analyzed by posing

initial conditions in which there was a disturbance in one or more of the

characteristic variables either locally at the center of the grid or uniform-

ly throughout the grid, of the order of 10%.

Thus figure 1 shows what happens if the disturbance in only in the

third characteristics variable locally using the windward characteristic

variables.

Figure 3 shows the effect of a plus +10% error in the initial conditions

W and W and a -10% error in W2. (The first curve from the bottom is the

initial state of the variable, and the others are the states at intervals of

25 iterations). In figure 2, we have an initial disturbance in W2 of -10%

with no initial disturbance in W or W The pictures look essentially the

same as figure 1. There is considerable nonlinear interaction until the

17
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W2 wave exists, and then uncoupled wave motion to the right in the first

variable (W1) and to the left in the third variable (W3 ). There are no

reflections when the W1 and W3 waves exit and convergence is reached in

300 iterations.

These computations were made using the windward differencing charac-

teristic boundary conditions, *Ithough the same results were obtained with

the no change characteristic boundary tonditlons.

In figure 4, we show the effect of a local disturbance at the center

of the grid in the W2 variable with the second set of B.C.'s and in figure

5 we show a speeded up version (every 50 iterations) of the same distur-

b3nce with the first set of B.C.'s. The third and fifth graphs on figure 4

are alvost exactly the same as the second and fourth on figure 5. Figure 5

shows convergence being reached in 300 iterations.

We conclude that either of the first two sets oi boundary conditions

give optimal convergence since convergence cannot take place until the wave

in W2 exists (very quickly) and the residual (nonlinear) effects of W2 on

W3 can exit upstream. If they can do this without any reflections, then

the convergence is essentially optimal.

Sometimes, it is objected that in a wind tunnel e:periment, the only

variable .iown downstream is pressure and that we are requiring too much
..I

Information in prescribing K3, which demands a knowledge of p and u at

the outflow. Suppose, then we just prescribe p. at the outflow using the

otherwise successful conditions of wl M aN2 = 0 as complementary nunerical
3x ax

boundary conditions. Then we could have, for example

-1

'.
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p IV~fLObi OUTFLOWI

W (o,t) -K 1 d

p 2(o K 2  dw11 (L,t) 0 (15)
dx

d3  dW2
-W(o,t) = 0 = (L,) 0

-':dW dW2

The inflow boundary conditions are precisely those of (12). The outflow

boundary conditions (used by Steger [12]) are

'" PN - Po,

- (1/c0)(p - pN-l) + PN-1

K UN a (1/poco)(PN-1 - P-)+ uN-I

The predictions of section VI are clear. The fact that p is pre-

scribed means that vlien a wave in W2 comes downstream, it exits by adjusting

the u values at x xN. This in turn causes disturbances in W3= -u+(1/pcP)P0

which cause a reflected wave upstream. This wave can be seen in figure 6.

Since the upstream B.C. is non-reflecting, this means that the left runuing

wave will exit without incidence. When compared with boundary conditions

(13) or (14) it is obviously less desirable because of the magnitude of the

reflection in W However it does converge in approximately 300 iterations,

which is again almost optimal. The effect of these large oscillations in

more complicated geometries may prove undesirable, however.

3 We briefly review our progress so far. Two sets of non-reflecting

boundary conditions have been produced, both of which give optimal con-

vergence but which rely on a great deal of information at both ends. The

infom.ation however is used in such a way as to allow additional degrees of

freedom for the waves to exit without repeated reflections. One reflecting

19
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and one non-reflecting boundary condition can be combined to obtain

almost optimal convergence at the cost of some large left running

reflections, whose effect in more complicated geometries remains un-

certain. While B.C. 13 was expected to be less accurate than B.C. 14,.%,

little evidence for this has been uncovered, except at the boundaries.

Time dependent periodic flows (e.g. self excited oscillations) may prefer

B.C. 14 however. We now consider some of the other boundary condi-

tions which have bcen tried previously in the literature.

First we consider the case of reflecting boundary conditions. These

occur in several places in the literature, for example in [10] and [12]

and have been discussed in section VI. As we have seen, these arise from

prescribing combinations of charactcristic variables such as pressure do:n-

stream, and other c:'.'i,itions (perhaps to density and velocity u..tr,,,,).

:n 'ICI Ridy .,nd Strikterda considered (anong many others) jhe bcund;ar.

c, .ndi t ions

INFLOW OUTFLOW

du

T= T d 0  (16'
dx

dW3
-=0 p - p.
dx

and in [12] Steger uses
dWI41-- u= u -=0

-cc dx

* dW_" , C = = --zdx = 0 (17)

ddx

- p =P

20
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Figure 7 shows the effects of an initial local disturbance in W3 on

both of these sets of boundary conditions, (16) on the left and i17) on

the right. Note that first there is only a disturbance in the bottom

picture. By iteration 75 (fourth curve up from the bottom) we can see

reflections in both W2 and W although the W2 deiration is a little harder

to see. By iteration 125 it can be seen that the W2 wave has travelled

downstream and is reflected back upstream in W These reflections con-

tinued (somewhat smeared out) for at least 2000 iterations. Perhaps most

startling is (at least at the beginning) how similar they are. A conclusion

may be drawn from B.C.'s (15), (16), and (17). Prescribing physical values

instead of characteristic values gives rise to reflection. If the reflec-

tions can occur only at one end, this does not impede convergence. However,

reflecting conditions at both ends can be disastrous. This accounts for

the "spurious pressure waves" mentioned by Moretti [7].

The case of prescription at the wrong end is now considered. In this

case, the variables u, p, p are prescribed at the inflow and the conditions

du L _. = 0
dx dx dx

are prescribed at the outflow. In this case, square wave disturbances

which affected only the interiors of the domain exited as in figure 1, with

some minor oscillations. However, when a uniformly wrong initial condi-

tion was imposed, convergence was very slow with large oscillations, and

the solution converged to the wrong values, with errors of as much as 27%.

The converged value was a function of the initial condition at the outflow

end, as predicted in Gustafson and Kreiss [3]. The resulting graphs are

given in figure 8.
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A 'rvd t o h( .,e r !11. 1 s he ". t16d of ,,-%:r pl .script A n of

boundarles. This nethod is .entioned in [9] as giving good r,:sults al-

though the authors caution :, .inst it on the grounds of small -s- i11 itl,,ns

being present. In fact the situation is much more serious. If initial

waves in the interior of the domain are used with the initial conditions

correct near the outflow, then the solution converges rapidly as the

travelling waves exit without reflections arrd with minor oscillations.

-owever, if the Initial data is uniformly wrong with an error intially

at the outflow point, then W and W2 converge rapidly but W3 accumulates

huge errors of the order of 70Z. Eventually when I and W are converged,

the correct value is propagated upwind in W but taking large amounts of

time to converge because of the large errors near the inflow point. Indeed,

as W bec.mes more accurate dc.nstream the inaccuracies becore much
2

'arger (11,0%) lipstream. 71-rti.-ularly in a time deperdcnt Problem or in

a problem with more complicated geometries, this could be truly disastrous.

It points to another fact: if a new boundary condition is being tested, it

is not sufficient to consider initial value perturbations from free stream

which are non-zero in the interior only. In this case, we might have

drawn totally wrong conclusions from the time taken for convergence.

In [10), a separate non-reflecting boundary condition is proposed.

This boundary condition alters the value of K3, increasing it if the computed

value of p is less than p., and decreasing it if the computed value of p is

greater than p.. Some thought shows that this cannot be optimal. Indeed,

we can choose a variation from the intial conditions in which p is less

than p., but because us is smaller than u,, computed W 3 is actually larger

than W In this case, the proposed non-reflecting boundary condition
39
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of [10] could introduce more errors into the system, by increasing W

at the outflow point even more.

VIII. RECOMMENDATIONS:

We have completed an initial study of the one-dimensional Navier-

Stokes equations and their far-field boundary conditions; and developed

a one-dimensional code to provide numerical solutions. We have used

this code to evaluate the impact of a variety of different boundary condi-

tions upon the successful numerical solution of these problems. Several

outstanding problems remain to be studied.

First one should examine the usefulness of the two recommended boundary

condition sets in time dependent situations. It may well be that the

difference between no-change characteristic boundary conditions and windward-

difference characteristic boundary conditions will prove to be highly signifi-

cant important in a time dependent problem. If so, this would be signifi-

cant since a high proportion of work currently done at the Flight Dynamics

*, Laboratory Computational Aerodynamics Group is of this type.

Recommendation for future efforts is to implement these characteristic

boundary conditions in two and three-dimensional codes. This is presently

in progress. As this is done, there is no doubt that further refinements

will need to be considered.

In the discussion of our results, we noted, but did not stress, the

following problem. Truly accurate time dependent solutions only exist if

the C.F.L. number is close to 1. The time step is limited by a stability

requirement that the C.F.L. number be less than 1. The problem with this

is that the C.F.L. number is calculated on the basis of the fastest moving

23
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wave, which is the fastest to leave the region. After a relatively

short amount of time, only the slow-moving waves are left. This ought

(at least for some cycle of iterations) allow us to use a larger time

step. This has not yet been thoroughly explored and we recommend

that a study be made of this problem This could result in substantial

savings of expenditure of computer time.

More work needs to be done to properly understand the nonlinear

actions between the characteristic waves. This problem is not under-

stood at this time and a proper understanding might give a clue to correct

posing of intial conditions in such a way as to minimize start-up shocks,

as observed in figures 4 and 5.

Another problem to be investigated on the one-dimensional code is

whether up-dating the coefficients p0  c0  u0 to the (n+l)
s t time step

values significantly accelerates convergence to steady state or improves

accuracy. Either result would improve computational efficiency in the

future.

Finally, we need to evaluate how appropriate these sets of boundary

conditions are in the presence of stationary shock waves. This can be

done first on a one-dimensional model problem.

'.2
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